KickJava   Java API By Example, From Geeks To Geeks.

Java > Open Source Codes > org > apache > commons > math > analysis > SplineInterpolatorTest


1 /*
2  *
3  * Copyright (c) 2004-2005 The Apache Software Foundation. All rights reserved.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License"); you may not
6  * use this file except in compliance with the License. You may obtain a copy
7  * of the License at
8  *
9  * http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14  * License for the specific language governing permissions and limitations
15  * under the License.
16  *
17  */

18 package org.apache.commons.math.analysis;
19
20 import org.apache.commons.math.MathException;
21 import org.apache.commons.math.TestUtils;
22
23 import junit.framework.Test;
24 import junit.framework.TestCase;
25 import junit.framework.TestSuite;
26
27 /**
28  * Test the SplineInterpolator.
29  *
30  * @version $Revision$ $Date: 2005-06-26 15:25:41 -0700 (Sun, 26 Jun 2005) $
31  */

32 public class SplineInterpolatorTest extends TestCase {
33     
34     /** error tolerance for spline interpolator value at knot points */
35     protected double knotTolerance = 1E-12;
36    
37     /** error tolerance for interpolating polynomial coefficients */
38     protected double coefficientTolerance = 1E-6;
39     
40     /** error tolerance for interpolated values -- high value is from sin test */
41     protected double interpolationTolerance = 1E-2;
42
43     public SplineInterpolatorTest(String JavaDoc name) {
44         super(name);
45     }
46
47     public static Test suite() {
48         TestSuite suite = new TestSuite(SplineInterpolatorTest.class);
49         suite.setName("UnivariateRealInterpolator Tests");
50         return suite;
51     }
52
53     public void testInterpolateLinearDegenerateTwoSegment()
54         throws Exception JavaDoc {
55         double x[] = { 0.0, 0.5, 1.0 };
56         double y[] = { 0.0, 0.5, 1.0 };
57         UnivariateRealInterpolator i = new SplineInterpolator();
58         UnivariateRealFunction f = i.interpolate(x, y);
59         verifyInterpolation(f, x, y);
60         verifyConsistency((PolynomialSplineFunction) f, x);
61         
62         // Verify coefficients using analytical values
63
PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
64         double target[] = {y[0], 1d, 0d, 0d};
65         TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
66         target = new double[]{y[1], 1d, 0d, 0d};
67         TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
68         
69         // Check interpolation
70
assertEquals(0.0,f.value(0.0), interpolationTolerance);
71         assertEquals(0.4,f.value(0.4), interpolationTolerance);
72         assertEquals(1.0,f.value(1.0), interpolationTolerance);
73     }
74
75     public void testInterpolateLinearDegenerateThreeSegment()
76         throws Exception JavaDoc {
77         double x[] = { 0.0, 0.5, 1.0, 1.5 };
78         double y[] = { 0.0, 0.5, 1.0, 1.5 };
79         UnivariateRealInterpolator i = new SplineInterpolator();
80         UnivariateRealFunction f = i.interpolate(x, y);
81         verifyInterpolation(f, x, y);
82         
83         // Verify coefficients using analytical values
84
PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
85         double target[] = {y[0], 1d, 0d, 0d};
86         TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
87         target = new double[]{y[1], 1d, 0d, 0d};
88         TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
89         target = new double[]{y[2], 1d, 0d, 0d};
90         TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance);
91         
92         // Check interpolation
93
assertEquals(0,f.value(0), interpolationTolerance);
94         assertEquals(1.4,f.value(1.4), interpolationTolerance);
95         assertEquals(1.5,f.value(1.5), interpolationTolerance);
96     }
97
98     public void testInterpolateLinear() throws Exception JavaDoc {
99         double x[] = { 0.0, 0.5, 1.0 };
100         double y[] = { 0.0, 0.5, 0.0 };
101         UnivariateRealInterpolator i = new SplineInterpolator();
102         UnivariateRealFunction f = i.interpolate(x, y);
103         verifyInterpolation(f, x, y);
104         verifyConsistency((PolynomialSplineFunction) f, x);
105         
106         // Verify coefficients using analytical values
107
PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
108         double target[] = {y[0], 1.5d, 0d, -2d};
109         TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
110         target = new double[]{y[1], 0d, -3d, 2d};
111         TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
112     }
113     
114     public void testInterpolateSin() throws Exception JavaDoc {
115         double x[] =
116             {
117                 0.0,
118                 Math.PI / 6d,
119                 Math.PI / 2d,
120                 5d * Math.PI / 6d,
121                 Math.PI,
122                 7d * Math.PI / 6d,
123                 3d * Math.PI / 2d,
124                 11d * Math.PI / 6d,
125                 2.d * Math.PI };
126         double y[] = { 0d, 0.5d, 1d, 0.5d, 0d, -0.5d, -1d, -0.5d, 0d };
127         UnivariateRealInterpolator i = new SplineInterpolator();
128         UnivariateRealFunction f = i.interpolate(x, y);
129         verifyInterpolation(f, x, y);
130         verifyConsistency((PolynomialSplineFunction) f, x);
131         
132         /* Check coefficients against values computed using R (version 1.8.1, Red Hat Linux 9)
133          *
134          * To replicate in R:
135          * x[1] <- 0
136          * x[2] <- pi / 6, etc, same for y[] (could use y <- scan() for y values)
137          * g <- splinefun(x, y, "natural")
138          * splinecoef <- eval(expression(z), envir = environment(g))
139          * print(splinecoef)
140          */

141         PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
142         double target[] = {y[0], 1.002676d, 0d, -0.17415829d};
143         TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
144         target = new double[]{y[1], 8.594367e-01, -2.735672e-01, -0.08707914};
145         TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
146         target = new double[]{y[2], 1.471804e-17,-5.471344e-01, 0.08707914};
147         TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance);
148         target = new double[]{y[3], -8.594367e-01, -2.735672e-01, 0.17415829};
149         TestUtils.assertEquals(polynomials[3].getCoefficients(), target, coefficientTolerance);
150         target = new double[]{y[4], -1.002676, 6.548562e-17, 0.17415829};
151         TestUtils.assertEquals(polynomials[4].getCoefficients(), target, coefficientTolerance);
152         target = new double[]{y[5], -8.594367e-01, 2.735672e-01, 0.08707914};
153         TestUtils.assertEquals(polynomials[5].getCoefficients(), target, coefficientTolerance);
154         target = new double[]{y[6], 3.466465e-16, 5.471344e-01, -0.08707914};
155         TestUtils.assertEquals(polynomials[6].getCoefficients(), target, coefficientTolerance);
156         target = new double[]{y[7], 8.594367e-01, 2.735672e-01, -0.17415829};
157         TestUtils.assertEquals(polynomials[7].getCoefficients(), target, coefficientTolerance);
158         
159         //Check interpolation
160
assertEquals(Math.sqrt(2d) / 2d,f.value(Math.PI/4d),interpolationTolerance);
161         assertEquals(Math.sqrt(2d) / 2d,f.value(3d*Math.PI/4d),interpolationTolerance);
162     }
163     
164
165     public void testIllegalArguments() throws MathException {
166         // Data set arrays of different size.
167
UnivariateRealInterpolator i = new SplineInterpolator();
168         try {
169             double xval[] = { 0.0, 1.0 };
170             double yval[] = { 0.0, 1.0, 2.0 };
171             i.interpolate(xval, yval);
172             fail("Failed to detect data set array with different sizes.");
173         } catch (IllegalArgumentException JavaDoc iae) {
174         }
175         // X values not sorted.
176
try {
177             double xval[] = { 0.0, 1.0, 0.5 };
178             double yval[] = { 0.0, 1.0, 2.0 };
179             i.interpolate(xval, yval);
180             fail("Failed to detect unsorted arguments.");
181         } catch (IllegalArgumentException JavaDoc iae) {
182         }
183     }
184     
185     /**
186      * verifies that f(x[i]) = y[i] for i = 0..n-1 where n is common length.
187      */

188     protected void verifyInterpolation(UnivariateRealFunction f, double x[], double y[])
189         throws Exception JavaDoc{
190         for (int i = 0; i < x.length; i++) {
191             assertEquals(f.value(x[i]), y[i], knotTolerance);
192         }
193     }
194     
195     /**
196      * Verifies that interpolating polynomials satisfy consistency requirement:
197      * adjacent polynomials must agree through two derivatives at knot points
198      */

199     protected void verifyConsistency(PolynomialSplineFunction f, double x[])
200         throws Exception JavaDoc {
201         PolynomialFunction polynomials[] = f.getPolynomials();
202         for (int i = 1; i < x.length - 2; i++) {
203             // evaluate polynomials and derivatives at x[i + 1]
204
assertEquals(polynomials[i].value(x[i +1] - x[i]), polynomials[i + 1].value(0), 0.1);
205             assertEquals(polynomials[i].derivative().value(x[i +1] - x[i]),
206                     polynomials[i + 1].derivative().value(0), 0.5);
207             assertEquals(polynomials[i].polynomialDerivative().derivative().value(x[i +1] - x[i]),
208                     polynomials[i + 1].polynomialDerivative().derivative().value(0), 0.5);
209         }
210     }
211     
212 }
213
Popular Tags