KickJava   Java API By Example, From Geeks To Geeks.

Java > Open Source Codes > org > apache > commons > math > analysis > PolynomialFunction


1 /*
2  * Copyright 2003-2004 The Apache Software Foundation.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */

16 package org.apache.commons.math.analysis;
17
18 import java.io.Serializable JavaDoc;
19
20 /**
21  * Immutable representation of a real polynomial function with real coefficients.
22  * <p>
23  * <a HREF="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a>
24  * is used to evaluate the function.
25  *
26  * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $
27  */

28 public class PolynomialFunction implements DifferentiableUnivariateRealFunction, Serializable JavaDoc {
29
30     /** Serializable version identifier */
31     static final long serialVersionUID = 3322454535052136809L;
32     
33     /**
34      * The coefficients of the polynomial, ordered by degree -- i.e.,
35      * coefficients[0] is the constant term and coefficients[n] is the
36      * coefficient of x^n where n is the degree of the polynomial.
37      */

38     private double coefficients[];
39
40     /**
41      * Construct a polynomial with the given coefficients. The first element
42      * of the coefficients array is the constant term. Higher degree
43      * coefficients follow in sequence. The degree of the resulting polynomial
44      * is the length of the array minus 1.
45      * <p>
46      * The constructor makes a copy of the input array and assigns the copy to
47      * the coefficients property.
48      *
49      * @param c polynominal coefficients
50      * @throws NullPointerException if c is null
51      * @throws IllegalArgumentException if c is empty
52      */

53     public PolynomialFunction(double c[]) {
54         super();
55         if (c.length < 1) {
56             throw new IllegalArgumentException JavaDoc("Polynomial coefficient array must have postive length.");
57         }
58         this.coefficients = new double[c.length];
59         System.arraycopy(c, 0, this.coefficients, 0, c.length);
60     }
61
62     /**
63      * Compute the value of the function for the given argument.
64      * <p>
65      * The value returned is <br>
66      * <code>coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]</code>
67      *
68      * @param x the argument for which the function value should be computed
69      * @return the value of the polynomial at the given point
70      * @see UnivariateRealFunction#value(double)
71      */

72     public double value(double x) {
73        return evaluate(coefficients, x);
74     }
75
76
77     /**
78      * Returns the degree of the polynomial
79      *
80      * @return the degree of the polynomial
81      */

82     public int degree() {
83         return coefficients.length - 1;
84     }
85     
86     /**
87      * Returns a copy of the coefficients array.
88      * <p>
89      * Changes made to the returned copy will not affect the coefficients of
90      * the polynomial.
91      *
92      * @return a fresh copy of the coefficients array
93      */

94     public double[] getCoefficients() {
95         double[] out = new double[coefficients.length];
96         System.arraycopy(coefficients,0, out, 0, coefficients.length);
97         return out;
98     }
99     
100     /**
101      * Uses Horner's Method to evaluate the polynomial with the given coefficients at
102      * the argument.
103      *
104      * @param coefficients the coefficients of the polynomial to evaluate
105      * @param argument the input value
106      * @return the value of the polynomial
107      * @throws IllegalArgumentException if coefficients is empty
108      * @throws NullPointerException if coefficients is null
109      */

110     protected static double evaluate(double[] coefficients, double argument) {
111         int n = coefficients.length;
112         if (n < 1) {
113             throw new IllegalArgumentException JavaDoc("Coefficient array must have positive length for evaluation");
114         }
115         double result = coefficients[n - 1];
116         for (int j = n -2; j >=0; j--) {
117             result = argument * result + coefficients[j];
118         }
119         return result;
120     }
121     
122     /**
123      * Returns the coefficients of the derivative of the polynomial with the given coefficients.
124      *
125      * @param coefficients the coefficients of the polynomial to differentiate
126      * @return the coefficients of the derivative or null if coefficients has length 1.
127      * @throws IllegalArgumentException if coefficients is empty
128      * @throws NullPointerException if coefficients is null
129      */

130     protected static double[] differentiate(double[] coefficients) {
131         int n = coefficients.length;
132         if (n < 1) {
133             throw new IllegalArgumentException JavaDoc("Coefficient array must have positive length for differentiation");
134         }
135         if (n == 1) {
136             return new double[]{0};
137         }
138         double[] result = new double[n - 1];
139         for (int i = n - 1; i > 0; i--) {
140             result[i - 1] = (double) i * coefficients[i];
141         }
142         return result;
143     }
144     
145     /**
146      * Returns the derivative as a PolynomialRealFunction
147      *
148      * @return the derivative polynomial
149      */

150     public PolynomialFunction polynomialDerivative() {
151         return new PolynomialFunction(differentiate(coefficients));
152     }
153     
154     /**
155      * Returns the derivative as a UnivariateRealFunction
156      *
157      * @return the derivative function
158      */

159     public UnivariateRealFunction derivative() {
160         return polynomialDerivative();
161     }
162    
163 }
164
Popular Tags