1 16 package org.apache.commons.math.stat.regression; 17 18 import java.util.Random ; 19 20 import junit.framework.Test; 21 import junit.framework.TestCase; 22 import junit.framework.TestSuite; 23 28 29 public final class SimpleRegressionTest extends TestCase { 30 31 36 private double[][] data = { { 0.1, 0.2 }, {338.8, 337.4 }, {118.1, 118.2 }, 37 {888.0, 884.6 }, {9.2, 10.1 }, {228.1, 226.5 }, {668.5, 666.3 }, {998.5, 996.3 }, 38 {449.1, 448.6 }, {778.9, 777.0 }, {559.2, 558.2 }, {0.3, 0.4 }, {0.1, 0.6 }, {778.1, 775.5 }, 39 {668.8, 666.9 }, {339.3, 338.0 }, {448.9, 447.5 }, {10.8, 11.6 }, {557.7, 556.0 }, 40 {228.3, 228.1 }, {998.0, 995.8 }, {888.8, 887.6 }, {119.6, 120.2 }, {0.3, 0.3 }, 41 {0.6, 0.3 }, {557.6, 556.8 }, {339.3, 339.1 }, {888.0, 887.2 }, {998.5, 999.0 }, 42 {778.9, 779.0 }, {10.2, 11.1 }, {117.6, 118.3 }, {228.9, 229.2 }, {668.4, 669.1 }, 43 {449.2, 448.9 }, {0.2, 0.5 } 44 }; 45 46 50 private double[][] corrData = { { 101.0, 99.2 }, {100.1, 99.0 }, {100.0, 100.0 }, 51 {90.6, 111.6 }, {86.5, 122.2 }, {89.7, 117.6 }, {90.6, 121.1 }, {82.8, 136.0 }, 52 {70.1, 154.2 }, {65.4, 153.6 }, {61.3, 158.5 }, {62.5, 140.6 }, {63.6, 136.2 }, 53 {52.6, 168.0 }, {59.7, 154.3 }, {59.5, 149.0 }, {61.3, 165.5 } 54 }; 55 56 60 private double[][] infData = { { 15.6, 5.2 }, {26.8, 6.1 }, {37.8, 8.7 }, {36.4, 8.5 }, 61 {35.5, 8.8 }, {18.6, 4.9 }, {15.3, 4.5 }, {7.9, 2.5 }, {0.0, 1.1 } 62 }; 63 64 67 private double[][] infData2 = { { 1, 1 }, {2, 0 }, {3, 5 }, {4, 2 }, 68 {5, -1 }, {6, 12 } 69 }; 70 71 public SimpleRegressionTest(String name) { 72 super(name); 73 } 74 75 public void setUp() { 76 } 77 78 public static Test suite() { 79 TestSuite suite = new TestSuite(SimpleRegressionTest.class); 80 suite.setName("BivariateRegression Tests"); 81 return suite; 82 } 83 84 public void testNorris() { 85 SimpleRegression regression = new SimpleRegression(); 86 for (int i = 0; i < data.length; i++) { 87 regression.addData(data[i][1], data[i][0]); 88 } 89 assertEquals("slope", 1.00211681802045, regression.getSlope(), 10E-12); 92 assertEquals("slope std err", 0.429796848199937E-03, 93 regression.getSlopeStdErr(),10E-12); 94 assertEquals("number of observations", 36, regression.getN()); 95 assertEquals( "intercept", -0.262323073774029, 96 regression.getIntercept(),10E-12); 97 assertEquals("std err intercept", 0.232818234301152, 98 regression.getInterceptStdErr(),10E-12); 99 assertEquals("r-square", 0.999993745883712, 100 regression.getRSquare(), 10E-12); 101 assertEquals("SSR", 4255954.13232369, 102 regression.getRegressionSumSquares(), 10E-9); 103 assertEquals("MSE", 0.782864662630069, 104 regression.getMeanSquareError(), 10E-10); 105 assertEquals("SSE", 26.6173985294224, 106 regression.getSumSquaredErrors(),10E-9); 107 109 assertEquals( "predict(0)", -0.262323073774029, 110 regression.predict(0), 10E-12); 111 assertEquals("predict(1)", 1.00211681802045 - 0.262323073774029, 112 regression.predict(1), 10E-12); 113 } 114 115 public void testCorr() { 116 SimpleRegression regression = new SimpleRegression(); 117 regression.addData(corrData); 118 assertEquals("number of observations", 17, regression.getN()); 119 assertEquals("r-square", .896123, regression.getRSquare(), 10E-6); 120 assertEquals("r", -0.94663767742, regression.getR(), 1E-10); 121 } 122 123 public void testNaNs() { 124 SimpleRegression regression = new SimpleRegression(); 125 assertTrue("intercept not NaN", Double.isNaN(regression.getIntercept())); 126 assertTrue("slope not NaN", Double.isNaN(regression.getSlope())); 127 assertTrue("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); 128 assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); 129 assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); 130 assertTrue("e not NaN", Double.isNaN(regression.getR())); 131 assertTrue("r-square not NaN", Double.isNaN(regression.getRSquare())); 132 assertTrue( "RSS not NaN", Double.isNaN(regression.getRegressionSumSquares())); 133 assertTrue("SSE not NaN",Double.isNaN(regression.getSumSquaredErrors())); 134 assertTrue("SSTO not NaN", Double.isNaN(regression.getTotalSumSquares())); 135 assertTrue("predict not NaN", Double.isNaN(regression.predict(0))); 136 137 regression.addData(1, 2); 138 regression.addData(1, 3); 139 140 assertTrue("intercept not NaN", Double.isNaN(regression.getIntercept())); 142 assertTrue("slope not NaN", Double.isNaN(regression.getSlope())); 143 assertTrue("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); 144 assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); 145 assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); 146 assertTrue("e not NaN", Double.isNaN(regression.getR())); 147 assertTrue("r-square not NaN", Double.isNaN(regression.getRSquare())); 148 assertTrue("RSS not NaN", Double.isNaN(regression.getRegressionSumSquares())); 149 assertTrue("SSE not NaN", Double.isNaN(regression.getSumSquaredErrors())); 150 assertTrue("predict not NaN", Double.isNaN(regression.predict(0))); 151 152 assertTrue("SSTO NaN", !Double.isNaN(regression.getTotalSumSquares())); 154 155 regression = new SimpleRegression(); 156 157 regression.addData(1, 2); 158 regression.addData(3, 3); 159 160 assertTrue("interceptNaN", !Double.isNaN(regression.getIntercept())); 162 assertTrue("slope NaN", !Double.isNaN(regression.getSlope())); 163 assertTrue ("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); 164 assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); 165 assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); 166 assertTrue("r NaN", !Double.isNaN(regression.getR())); 167 assertTrue("r-square NaN", !Double.isNaN(regression.getRSquare())); 168 assertTrue("RSS NaN", !Double.isNaN(regression.getRegressionSumSquares())); 169 assertTrue("SSE NaN", !Double.isNaN(regression.getSumSquaredErrors())); 170 assertTrue("SSTO NaN", !Double.isNaN(regression.getTotalSumSquares())); 171 assertTrue("predict NaN", !Double.isNaN(regression.predict(0))); 172 173 regression.addData(1, 4); 174 175 assertTrue("MSE NaN", !Double.isNaN(regression.getMeanSquareError())); 177 assertTrue("slope std err NaN", !Double.isNaN(regression.getSlopeStdErr())); 178 assertTrue("intercept std err NaN", !Double.isNaN(regression.getInterceptStdErr())); 179 } 180 181 public void testClear() { 182 SimpleRegression regression = new SimpleRegression(); 183 regression.addData(corrData); 184 assertEquals("number of observations", 17, regression.getN()); 185 regression.clear(); 186 assertEquals("number of observations", 0, regression.getN()); 187 regression.addData(corrData); 188 assertEquals("r-square", .896123, regression.getRSquare(), 10E-6); 189 regression.addData(data); 190 assertEquals("number of observations", 53, regression.getN()); 191 } 192 193 public void testInference() throws Exception { 194 SimpleRegression regression = new SimpleRegression(); 197 regression.addData(infData); 198 assertEquals("slope std err", 0.011448491, 199 regression.getSlopeStdErr(), 1E-10); 200 assertEquals("std err intercept", 0.286036932, 201 regression.getInterceptStdErr(),1E-8); 202 assertEquals("significance", 4.596e-07, 203 regression.getSignificance(),1E-8); 204 assertEquals("slope conf interval half-width", 0.0270713794287, 205 regression.getSlopeConfidenceInterval(),1E-8); 206 regression = new SimpleRegression(); 208 regression.addData(infData2); 209 assertEquals("slope std err", 1.07260253, 210 regression.getSlopeStdErr(), 1E-8); 211 assertEquals("std err intercept",4.17718672, 212 regression.getInterceptStdErr(),1E-8); 213 assertEquals("significance", 0.261829133982, 214 regression.getSignificance(),1E-11); 215 assertEquals("slope conf interval half-width", 2.97802204827, 216 regression.getSlopeConfidenceInterval(),1E-8); 217 219 assertTrue("tighter means wider", 221 regression.getSlopeConfidenceInterval() < regression.getSlopeConfidenceInterval(0.01)); 222 223 try { 224 double x = regression.getSlopeConfidenceInterval(1); 225 fail("expecting IllegalArgumentException for alpha = 1"); 226 } catch (IllegalArgumentException ex) { 227 ; 228 } 229 230 } 231 232 public void testPerfect() throws Exception { 233 SimpleRegression regression = new SimpleRegression(); 234 int n = 100; 235 for (int i = 0; i < n; i++) { 236 regression.addData(((double) i) / (n - 1), i); 237 } 238 assertEquals(0.0, regression.getSignificance(), 1.0e-5); 239 assertTrue(regression.getSlope() > 0.0); 240 } 241 242 public void testPerfectNegative() throws Exception { 243 SimpleRegression regression = new SimpleRegression(); 244 int n = 100; 245 for (int i = 0; i < n; i++) { 246 regression.addData(- ((double) i) / (n - 1), i); 247 } 248 249 assertEquals(0.0, regression.getSignificance(), 1.0e-5); 250 assertTrue(regression.getSlope() < 0.0); 251 } 252 253 public void testRandom() throws Exception { 254 SimpleRegression regression = new SimpleRegression(); 255 Random random = new Random (1); 256 int n = 100; 257 for (int i = 0; i < n; i++) { 258 regression.addData(((double) i) / (n - 1), random.nextDouble()); 259 } 260 261 assertTrue( 0.0 < regression.getSignificance() 262 && regression.getSignificance() < 1.0); 263 } 264 } 265 | Popular Tags |