KickJava   Java API By Example, From Geeks To Geeks.

Java > Open Source Codes > com > ibm > icu > text > TransliterationRule


1 /*
2  *******************************************************************************
3  * Copyright (C) 1996-2004, International Business Machines Corporation and *
4  * others. All Rights Reserved. *
5  *******************************************************************************
6  */

7 package com.ibm.icu.text;
8
9 import com.ibm.icu.impl.Utility;
10
11 /**
12  * A transliteration rule used by
13  * <code>RuleBasedTransliterator</code>.
14  * <code>TransliterationRule</code> is an immutable object.
15  *
16  * <p>A rule consists of an input pattern and an output string. When
17  * the input pattern is matched, the output string is emitted. The
18  * input pattern consists of zero or more characters which are matched
19  * exactly (the key) and optional context. Context must match if it
20  * is specified. Context may be specified before the key, after the
21  * key, or both. The key, preceding context, and following context
22  * may contain variables. Variables represent a set of Unicode
23  * characters, such as the letters <i>a</i> through <i>z</i>.
24  * Variables are detected by looking up each character in a supplied
25  * variable list to see if it has been so defined.
26  *
27  * <p>A rule may contain segments in its input string and segment
28  * references in its output string. A segment is a substring of the
29  * input pattern, indicated by an offset and limit. The segment may
30  * be in the preceding or following context. It may not span a
31  * context boundary. A segment reference is a special character in
32  * the output string that causes a segment of the input string (not
33  * the input pattern) to be copied to the output string. The range of
34  * special characters that represent segment references is defined by
35  * RuleBasedTransliterator.Data.
36  *
37  * <p>Example: The rule "([a-z]) . ([0-9]) > $2 . $1" will change the input
38  * string "abc.123" to "ab1.c23".
39  *
40  * <p>Copyright &copy; IBM Corporation 1999. All rights reserved.
41  *
42  * @author Alan Liu
43  */

44 class TransliterationRule {
45
46     // TODO Eliminate the pattern and keyLength data members. They
47
// are used only by masks() and getIndexValue() which are called
48
// only during build time, not during run-time. Perhaps these
49
// methods and pattern/keyLength can be isolated into a separate
50
// object.
51

52     /**
53      * The match that must occur before the key, or null if there is no
54      * preceding context.
55      */

56     private StringMatcher anteContext;
57
58     /**
59      * The matcher object for the key. If null, then the key is empty.
60      */

61     private StringMatcher key;
62
63     /**
64      * The match that must occur after the key, or null if there is no
65      * following context.
66      */

67     private StringMatcher postContext;
68
69     /**
70      * The object that performs the replacement if the key,
71      * anteContext, and postContext are matched. Never null.
72      */

73     private UnicodeReplacer output;
74
75     /**
76      * The string that must be matched, consisting of the anteContext, key,
77      * and postContext, concatenated together, in that order. Some components
78      * may be empty (zero length).
79      * @see anteContextLength
80      * @see keyLength
81      */

82     private String JavaDoc pattern;
83
84     /**
85      * An array of matcher objects corresponding to the input pattern
86      * segments. If there are no segments this is null. N.B. This is
87      * a UnicodeMatcher for generality, but in practice it is always a
88      * StringMatcher. In the future we may generalize this, but for
89      * now we sometimes cast down to StringMatcher.
90      */

91     UnicodeMatcher[] segments;
92
93     /**
94      * The length of the string that must match before the key. If
95      * zero, then there is no matching requirement before the key.
96      * Substring [0,anteContextLength) of pattern is the anteContext.
97      */

98     private int anteContextLength;
99
100     /**
101      * The length of the key. Substring [anteContextLength,
102      * anteContextLength + keyLength) is the key.
103      */

104     private int keyLength;
105
106     /**
107      * Miscellaneous attributes.
108      */

109     byte flags;
110
111     /**
112      * Flag attributes.
113      */

114     static final int ANCHOR_START = 1;
115     static final int ANCHOR_END = 2;
116
117     /**
118      * An alias pointer to the data for this rule. The data provides
119      * lookup services for matchers and segments.
120      */

121     private final RuleBasedTransliterator.Data data;
122
123
124     private static final String JavaDoc COPYRIGHT =
125         "\u00A9 IBM Corporation 1999-2001. All rights reserved.";
126
127     /**
128      * Construct a new rule with the given input, output text, and other
129      * attributes. A cursor position may be specified for the output text.
130      * @param input input string, including key and optional ante and
131      * post context
132      * @param anteContextPos offset into input to end of ante context, or -1 if
133      * none. Must be <= input.length() if not -1.
134      * @param postContextPos offset into input to start of post context, or -1
135      * if none. Must be <= input.length() if not -1, and must be >=
136      * anteContextPos.
137      * @param output output string
138      * @param cursorPos offset into output at which cursor is located, or -1 if
139      * none. If less than zero, then the cursor is placed after the
140      * <code>output</code>; that is, -1 is equivalent to
141      * <code>output.length()</code>. If greater than
142      * <code>output.length()</code> then an exception is thrown.
143      * @param cursorOffset an offset to be added to cursorPos to position the
144      * cursor either in the ante context, if < 0, or in the post context, if >
145      * 0. For example, the rule "abc{def} > | @@@ xyz;" changes "def" to
146      * "xyz" and moves the cursor to before "a". It would have a cursorOffset
147      * of -3.
148      * @param segs array of UnicodeMatcher corresponding to input pattern
149      * segments, or null if there are none
150      * @param anchorStart true if the the rule is anchored on the left to
151      * the context start
152      * @param anchorEnd true if the rule is anchored on the right to the
153      * context limit
154      */

155     public TransliterationRule(String JavaDoc input,
156                                int anteContextPos, int postContextPos,
157                                String JavaDoc output,
158                                int cursorPos, int cursorOffset,
159                                UnicodeMatcher[] segs,
160                                boolean anchorStart, boolean anchorEnd,
161                                RuleBasedTransliterator.Data theData) {
162         data = theData;
163
164         // Do range checks only when warranted to save time
165
if (anteContextPos < 0) {
166             anteContextLength = 0;
167         } else {
168             if (anteContextPos > input.length()) {
169                 throw new IllegalArgumentException JavaDoc("Invalid ante context");
170             }
171             anteContextLength = anteContextPos;
172         }
173         if (postContextPos < 0) {
174             keyLength = input.length() - anteContextLength;
175         } else {
176             if (postContextPos < anteContextLength ||
177                 postContextPos > input.length()) {
178                 throw new IllegalArgumentException JavaDoc("Invalid post context");
179             }
180             keyLength = postContextPos - anteContextLength;
181         }
182         if (cursorPos < 0) {
183             cursorPos = output.length();
184         } else if (cursorPos > output.length()) {
185             throw new IllegalArgumentException JavaDoc("Invalid cursor position");
186         }
187
188         // We don't validate the segments array. The caller must
189
// guarantee that the segments are well-formed (that is, that
190
// all $n references in the output refer to indices of this
191
// array, and that no array elements are null).
192
this.segments = segs;
193
194         pattern = input;
195         flags = 0;
196         if (anchorStart) {
197             flags |= ANCHOR_START;
198         }
199         if (anchorEnd) {
200             flags |= ANCHOR_END;
201         }
202
203         anteContext = null;
204         if (anteContextLength > 0) {
205             anteContext = new StringMatcher(pattern.substring(0, anteContextLength),
206                                             0, data);
207         }
208
209         key = null;
210         if (keyLength > 0) {
211             key = new StringMatcher(pattern.substring(anteContextLength, anteContextLength + keyLength),
212                                     0, data);
213         }
214
215         int postContextLength = pattern.length() - keyLength - anteContextLength;
216         postContext = null;
217         if (postContextLength > 0) {
218             postContext = new StringMatcher(pattern.substring(anteContextLength + keyLength),
219                                             0, data);
220         }
221
222         this.output = new StringReplacer(output, cursorPos + cursorOffset, data);
223     }
224
225     /**
226      * Return the preceding context length. This method is needed to
227      * support the <code>Transliterator</code> method
228      * <code>getMaximumContextLength()</code>.
229      */

230     public int getAnteContextLength() {
231         return anteContextLength + (((flags & ANCHOR_START) != 0) ? 1 : 0);
232     }
233
234     /**
235      * Internal method. Returns 8-bit index value for this rule.
236      * This is the low byte of the first character of the key,
237      * unless the first character of the key is a set. If it's a
238      * set, or otherwise can match multiple keys, the index value is -1.
239      */

240     final int getIndexValue() {
241         if (anteContextLength == pattern.length()) {
242             // A pattern with just ante context {such as foo)>bar} can
243
// match any key.
244
return -1;
245         }
246         int c = UTF16.charAt(pattern, anteContextLength);
247         return data.lookupMatcher(c) == null ? (c & 0xFF) : -1;
248     }
249
250     /**
251      * Internal method. Returns true if this rule matches the given
252      * index value. The index value is an 8-bit integer, 0..255,
253      * representing the low byte of the first character of the key.
254      * It matches this rule if it matches the first character of the
255      * key, or if the first character of the key is a set, and the set
256      * contains any character with a low byte equal to the index
257      * value. If the rule contains only ante context, as in foo)>bar,
258      * then it will match any key.
259      */

260     final boolean matchesIndexValue(int v) {
261         // Delegate to the key, or if there is none, to the postContext.
262
// If there is neither then we match any key; return true.
263
UnicodeMatcher m = (key != null) ? key : postContext;
264         return (m != null) ? m.matchesIndexValue(v) : true;
265     }
266
267     /**
268      * Return true if this rule masks another rule. If r1 masks r2 then
269      * r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks
270      * r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y".
271      * "[c]a>x" masks "[dc]a>y".
272      */

273     public boolean masks(TransliterationRule r2) {
274         /* Rule r1 masks rule r2 if the string formed of the
275          * antecontext, key, and postcontext overlaps in the following
276          * way:
277          *
278          * r1: aakkkpppp
279          * r2: aaakkkkkpppp
280          * ^
281          *
282          * The strings must be aligned at the first character of the
283          * key. The length of r1 to the left of the alignment point
284          * must be <= the length of r2 to the left; ditto for the
285          * right. The characters of r1 must equal (or be a superset
286          * of) the corresponding characters of r2. The superset
287          * operation should be performed to check for UnicodeSet
288          * masking.
289          *
290          * Anchors: Two patterns that differ only in anchors only
291          * mask one another if they are exactly equal, and r2 has
292          * all the anchors r1 has (optionally, plus some). Here Y
293          * means the row masks the column, N means it doesn't.
294          *
295          * ab ^ab ab$ ^ab$
296          * ab Y Y Y Y
297          * ^ab N Y N Y
298          * ab$ N N Y Y
299          * ^ab$ N N N Y
300          *
301          * Post context: {a}b masks ab, but not vice versa, since {a}b
302          * matches everything ab matches, and {a}b matches {|a|}b but ab
303          * does not. Pre context is different (a{b} does not align with
304          * ab).
305          */

306
307         /* LIMITATION of the current mask algorithm: Some rule
308          * maskings are currently not detected. For example,
309          * "{Lu}]a>x" masks "A]a>y". This can be added later. TODO
310          */

311
312         int len = pattern.length();
313         int left = anteContextLength;
314         int left2 = r2.anteContextLength;
315         int right = pattern.length() - left;
316         int right2 = r2.pattern.length() - left2;
317
318         // TODO Clean this up -- some logic might be combinable with the
319
// next statement.
320

321         // Test for anchor masking
322
if (left == left2 && right == right2 &&
323             keyLength <= r2.keyLength &&
324             r2.pattern.regionMatches(0, pattern, 0, len)) {
325             // The following boolean logic implements the table above
326
return (flags == r2.flags) ||
327                 (!((flags & ANCHOR_START) != 0) && !((flags & ANCHOR_END) != 0)) ||
328                 (((r2.flags & ANCHOR_START) != 0) && ((r2.flags & ANCHOR_END) != 0));
329         }
330
331         return left <= left2 &&
332             (right < right2 ||
333              (right == right2 && keyLength <= r2.keyLength)) &&
334             r2.pattern.regionMatches(left2 - left, pattern, 0, len);
335     }
336
337     static final int posBefore(Replaceable str, int pos) {
338         return (pos > 0) ?
339             pos - UTF16.getCharCount(str.char32At(pos-1)) :
340             pos - 1;
341     }
342
343     static final int posAfter(Replaceable str, int pos) {
344         return (pos >= 0 && pos < str.length()) ?
345             pos + UTF16.getCharCount(str.char32At(pos)) :
346             pos + 1;
347     }
348
349     /**
350      * Attempt a match and replacement at the given position. Return
351      * the degree of match between this rule and the given text. The
352      * degree of match may be mismatch, a partial match, or a full
353      * match. A mismatch means at least one character of the text
354      * does not match the context or key. A partial match means some
355      * context and key characters match, but the text is not long
356      * enough to match all of them. A full match means all context
357      * and key characters match.
358      *
359      * If a full match is obtained, perform a replacement, update pos,
360      * and return U_MATCH. Otherwise both text and pos are unchanged.
361      *
362      * @param text the text
363      * @param pos the position indices
364      * @param incremental if TRUE, test for partial matches that may
365      * be completed by additional text inserted at pos.limit.
366      * @return one of <code>U_MISMATCH</code>,
367      * <code>U_PARTIAL_MATCH</code>, or <code>U_MATCH</code>. If
368      * incremental is FALSE then U_PARTIAL_MATCH will not be returned.
369      */

370     public int matchAndReplace(Replaceable text,
371                                Transliterator.Position pos,
372                                boolean incremental) {
373         // Matching and replacing are done in one method because the
374
// replacement operation needs information obtained during the
375
// match. Another way to do this is to have the match method
376
// create a match result struct with relevant offsets, and to pass
377
// this into the replace method.
378

379         // ============================ MATCH ===========================
380

381         // Reset segment match data
382
if (segments != null) {
383             for (int i=0; i<segments.length; ++i) {
384                 ((StringMatcher) segments[i]).resetMatch();
385             }
386         }
387
388         int keyLimit;
389         int[] intRef = new int[1];
390
391         // ------------------------ Ante Context ------------------------
392

393         // A mismatch in the ante context, or with the start anchor,
394
// is an outright U_MISMATCH regardless of whether we are
395
// incremental or not.
396
int oText; // offset into 'text'
397
int minOText;
398
399         // Note (1): We process text in 16-bit code units, rather than
400
// 32-bit code points. This works because stand-ins are
401
// always in the BMP and because we are doing a literal match
402
// operation, which can be done 16-bits at a time.
403

404         int anteLimit = posBefore(text, pos.contextStart);
405
406         int match;
407
408         // Start reverse match at char before pos.start
409
intRef[0] = posBefore(text, pos.start);
410
411         if (anteContext != null) {
412             match = anteContext.matches(text, intRef, anteLimit, false);
413             if (match != UnicodeMatcher.U_MATCH) {
414                 return UnicodeMatcher.U_MISMATCH;
415             }
416         }
417
418         oText = intRef[0];
419
420         minOText = posAfter(text, oText);
421
422         // ------------------------ Start Anchor ------------------------
423

424         if (((flags & ANCHOR_START) != 0) && oText != anteLimit) {
425             return UnicodeMatcher.U_MISMATCH;
426         }
427
428         // -------------------- Key and Post Context --------------------
429

430         intRef[0] = pos.start;
431
432         if (key != null) {
433             match = key.matches(text, intRef, pos.limit, incremental);
434             if (match != UnicodeMatcher.U_MATCH) {
435                 return match;
436             }
437         }
438
439         keyLimit = intRef[0];
440
441         if (postContext != null) {
442             if (incremental && keyLimit == pos.limit) {
443                 // The key matches just before pos.limit, and there is
444
// a postContext. Since we are in incremental mode,
445
// we must assume more characters may be inserted at
446
// pos.limit -- this is a partial match.
447
return UnicodeMatcher.U_PARTIAL_MATCH;
448             }
449
450             match = postContext.matches(text, intRef, pos.contextLimit, incremental);
451             if (match != UnicodeMatcher.U_MATCH) {
452                 return match;
453             }
454         }
455
456         oText = intRef[0];
457
458         // ------------------------- Stop Anchor ------------------------
459

460         if (((flags & ANCHOR_END)) != 0) {
461             if (oText != pos.contextLimit) {
462                 return UnicodeMatcher.U_MISMATCH;
463             }
464             if (incremental) {
465                 return UnicodeMatcher.U_PARTIAL_MATCH;
466             }
467         }
468
469         // =========================== REPLACE ==========================
470

471         // We have a full match. The key is between pos.start and
472
// keyLimit.
473

474         int newLength = output.replace(text, pos.start, keyLimit, intRef);
475         int lenDelta = newLength - (keyLimit - pos.start);
476         int newStart = intRef[0];
477
478         oText += lenDelta;
479         pos.limit += lenDelta;
480         pos.contextLimit += lenDelta;
481         // Restrict new value of start to [minOText, min(oText, pos.limit)].
482
pos.start = Math.max(minOText, Math.min(Math.min(oText, pos.limit), newStart));
483         return UnicodeMatcher.U_MATCH;
484     }
485
486     /**
487      * Create a source string that represents this rule. Append it to the
488      * given string.
489      */

490     public String JavaDoc toRule(boolean escapeUnprintable) {
491        // int i;
492

493         StringBuffer JavaDoc rule = new StringBuffer JavaDoc();
494
495         // Accumulate special characters (and non-specials following them)
496
// into quoteBuf. Append quoteBuf, within single quotes, when
497
// a non-quoted element must be inserted.
498
StringBuffer JavaDoc quoteBuf = new StringBuffer JavaDoc();
499
500         // Do not emit the braces '{' '}' around the pattern if there
501
// is neither anteContext nor postContext.
502
boolean emitBraces =
503             (anteContext != null) || (postContext != null);
504
505         // Emit start anchor
506
if ((flags & ANCHOR_START) != 0) {
507             rule.append('^');
508         }
509
510         // Emit the input pattern
511
Utility.appendToRule(rule, anteContext, escapeUnprintable, quoteBuf);
512
513         if (emitBraces) {
514             Utility.appendToRule(rule, '{', true, escapeUnprintable, quoteBuf);
515         }
516
517         Utility.appendToRule(rule, key, escapeUnprintable, quoteBuf);
518
519         if (emitBraces) {
520             Utility.appendToRule(rule, '}', true, escapeUnprintable, quoteBuf);
521         }
522
523         Utility.appendToRule(rule, postContext, escapeUnprintable, quoteBuf);
524
525         // Emit end anchor
526
if ((flags & ANCHOR_END) != 0) {
527             rule.append('$');
528         }
529
530         Utility.appendToRule(rule, " > ", true, escapeUnprintable, quoteBuf);
531
532         // Emit the output pattern
533

534         Utility.appendToRule(rule, output.toReplacerPattern(escapeUnprintable),
535                      true, escapeUnprintable, quoteBuf);
536
537         Utility.appendToRule(rule, ';', true, escapeUnprintable, quoteBuf);
538
539         return rule.toString();
540     }
541
542     /**
543      * Return a string representation of this object.
544      * @return string representation of this object
545      */

546     public String JavaDoc toString() {
547         return '{' + toRule(true) + '}';
548     }
549
550     /**
551      * Union the set of all characters that may be modified by this rule
552      * into the given set.
553      */

554     void addSourceSetTo(UnicodeSet toUnionTo) {
555         int limit = anteContextLength + keyLength;
556         for (int i=anteContextLength; i<limit; ) {
557             int ch = UTF16.charAt(pattern, i);
558             i += UTF16.getCharCount(ch);
559             UnicodeMatcher matcher = data.lookupMatcher(ch);
560             if (matcher == null) {
561                 toUnionTo.add(ch);
562             } else {
563                 matcher.addMatchSetTo(toUnionTo);
564             }
565         }
566     }
567
568     /**
569      * Union the set of all characters that may be emitted by this rule
570      * into the given set.
571      */

572     void addTargetSetTo(UnicodeSet toUnionTo) {
573         output.addReplacementSetTo(toUnionTo);
574     }
575 }
576
Popular Tags