KickJava   Java API By Example, From Geeks To Geeks.

Java > Open Source Codes > EDU > oswego > cs > dl > util > concurrent > FJTaskRunner


1 /*
2   File: FJTaskRunner.java
3
4   Originally written by Doug Lea and released into the public domain.
5   This may be used for any purposes whatsoever without acknowledgment.
6   Thanks for the assistance and support of Sun Microsystems Labs,
7   and everyone contributing, testing, and using this code.
8
9   History:
10   Date Who What
11   7Jan1999 dl First public release
12   13Jan1999 dl correct a stat counter update;
13                                 ensure inactive status on run termination;
14                                 misc minor cleaup
15   14Jan1999 dl Use random starting point in scan;
16                                 variable renamings.
17   18Jan1999 dl Runloop allowed to die on task exception;
18                                 remove useless timed join
19   22Jan1999 dl Rework scan to allow use of priorities.
20   6Feb1999 dl Documentation updates.
21   7Mar1999 dl Add array-based coInvoke
22   31Mar1999 dl Revise scan to remove need for NullTasks
23   27Apr1999 dl Renamed
24   23oct1999 dl Earlier detect of interrupt in scanWhileIdling
25   24nov1999 dl Now works on JVMs that do not properly
26                                 implement read-after-write of 2 volatiles.
27 */

28
29 package EDU.oswego.cs.dl.util.concurrent;
30
31 import java.util.Random JavaDoc;
32
33 /**
34  * Specialized Thread subclass for running FJTasks.
35  * <p>
36  * Each FJTaskRunner keeps FJTasks in a double-ended queue (DEQ).
37  * Double-ended queues support stack-based operations
38  * push and pop, as well as queue-based operations put and take.
39  * Normally, threads run their own tasks. But they
40  * may also steal tasks from each others DEQs.
41  * <p>
42  * The algorithms are minor variants of those used
43  * in <A HREF="http://supertech.lcs.mit.edu/cilk/"> Cilk</A> and
44  * <A HREF="http://www.cs.utexas.edu/users/hood/"> Hood</A>, and
45  * to a lesser extent
46  * <A HREF="http://www.cs.uga.edu/~dkl/filaments/dist.html"> Filaments</A>,
47  * but are adapted to work in Java.
48  * <p>
49  * The two most important capabilities are:
50  * <ul>
51  * <li> Fork a FJTask:
52  * <pre>
53  * Push task onto DEQ
54  * </pre>
55  * <li> Get a task to run (for example within taskYield)
56  * <pre>
57  * If DEQ is not empty,
58  * Pop a task and run it.
59  * Else if any other DEQ is not empty,
60  * Take ("steal") a task from it and run it.
61  * Else if the entry queue for our group is not empty,
62  * Take a task from it and run it.
63  * Else if current thread is otherwise idling
64  * If all threads are idling
65  * Wait for a task to be put on group entry queue
66  * Else
67  * Yield or Sleep for a while, and then retry
68  * </pre>
69  * </ul>
70  * The push, pop, and put are designed to only ever called by the
71  * current thread, and take (steal) is only ever called by
72  * other threads.
73  * All other operations are composites and variants of these,
74  * plus a few miscellaneous bookkeeping methods.
75  * <p>
76  * Implementations of the underlying representations and operations
77  * are geared for use on JVMs operating on multiple CPUs (although
78  * they should of course work fine on single CPUs as well).
79  * <p>
80  * A possible snapshot of a FJTaskRunner's DEQ is:
81  * <pre>
82  * 0 1 2 3 4 5 6 ...
83  * +-----+-----+-----+-----+-----+-----+-----+--
84  * | | t | t | t | t | | | ... deq array
85  * +-----+-----+-----+-----+-----+-----+-----+--
86  * ^ ^
87  * base top
88  * (incremented (incremented
89  * on take, on push
90  * decremented decremented
91  * on put) on pop)
92  * </pre>
93  * <p>
94  * FJTasks are held in elements of the DEQ.
95  * They are maintained in a bounded array that
96  * works similarly to a circular bounded buffer. To ensure
97  * visibility of stolen FJTasks across threads, the array elements
98  * must be <code>volatile</code>.
99  * Using volatile rather than synchronizing suffices here since
100  * each task accessed by a thread is either one that it
101  * created or one that has never seen before. Thus we cannot
102  * encounter any staleness problems executing run methods,
103  * although FJTask programmers must be still sure to either synch or use
104  * volatile for shared data within their run methods.
105  * <p>
106  * However, since there is no way
107  * to declare an array of volatiles in Java, the DEQ elements actually
108  * hold VolatileTaskRef objects, each of which in turn holds a
109  * volatile reference to a FJTask.
110  * Even with the double-indirection overhead of
111  * volatile refs, using an array for the DEQ works out
112  * better than linking them since fewer shared
113  * memory locations need to be
114  * touched or modified by the threads while using the DEQ.
115  * Further, the double indirection may alleviate cache-line
116  * sharing effects (which cannot otherwise be directly dealt with in Java).
117  * <p>
118  * The indices for the <code>base</code> and <code>top</code> of the DEQ
119  * are declared as volatile. The main contention point with
120  * multiple FJTaskRunner threads occurs when one thread is trying
121  * to pop its own stack while another is trying to steal from it.
122  * This is handled via a specialization of Dekker's algorithm,
123  * in which the popping thread pre-decrements <code>top</code>,
124  * and then checks it against <code>base</code>.
125  * To be conservative in the face of JVMs that only partially
126  * honor the specification for volatile, the pop proceeds
127  * without synchronization only if there are apparently enough
128  * items for both a simultaneous pop and take to succeed.
129  * It otherwise enters a
130  * synchronized lock to check if the DEQ is actually empty,
131  * if so failing. The stealing thread
132  * does almost the opposite, but is set up to be less likely
133  * to win in cases of contention: Steals always run under synchronized
134  * locks in order to avoid conflicts with other ongoing steals.
135  * They pre-increment <code>base</code>, and then check against
136  * <code>top</code>. They back out (resetting the base index
137  * and failing to steal) if the
138  * DEQ is empty or is about to become empty by an ongoing pop.
139  * <p>
140  * A push operation can normally run concurrently with a steal.
141  * A push enters a synch lock only if the DEQ appears full so must
142  * either be resized or have indices adjusted due to wrap-around
143  * of the bounded DEQ. The put operation always requires synchronization.
144  * <p>
145  * When a FJTaskRunner thread has no tasks of its own to run,
146  * it tries to be a good citizen.
147  * Threads run at lower priority while scanning for work.
148  * <p>
149  * If the task is currently waiting
150  * via yield, the thread alternates scans (starting at a randomly
151  * chosen victim) with Thread.yields. This is
152  * well-behaved so long as the JVM handles Thread.yield in a
153  * sensible fashion. (It need not. Thread.yield is so underspecified
154  * that it is legal for a JVM to treat it as a no-op.) This also
155  * keeps things well-behaved even if we are running on a uniprocessor
156  * JVM using a simple cooperative threading model.
157  * <p>
158  * If a thread needing work is
159  * is otherwise idle (which occurs only in the main runloop), and
160  * there are no available tasks to steal or poll, it
161  * instead enters into a sleep-based (actually timed wait(msec))
162  * phase in which it progressively sleeps for longer durations
163  * (up to a maximum of FJTaskRunnerGroup.MAX_SLEEP_TIME,
164  * currently 100ms) between scans.
165  * If all threads in the group
166  * are idling, they further progress to a hard wait phase, suspending
167  * until a new task is entered into the FJTaskRunnerGroup entry queue.
168  * A sleeping FJTaskRunner thread may be awakened by a new
169  * task being put into the group entry queue or by another FJTaskRunner
170  * becoming active, but not merely by some DEQ becoming non-empty.
171  * Thus the MAX_SLEEP_TIME provides a bound for sleep durations
172  * in cases where all but one worker thread start sleeping
173  * even though there will eventually be work produced
174  * by a thread that is taking a long time to place tasks in DEQ.
175  * These sleep mechanics are handled in the FJTaskRunnerGroup class.
176  * <p>
177  * Composite operations such as taskJoin include heavy
178  * manual inlining of the most time-critical operations
179  * (mainly FJTask.invoke).
180  * This opens up a few opportunities for further hand-optimizations.
181  * Until Java compilers get a lot smarter, these tweaks
182  * improve performance significantly enough for task-intensive
183  * programs to be worth the poorer maintainability and code duplication.
184  * <p>
185  * Because they are so fragile and performance-sensitive, nearly
186  * all methods are declared as final. However, nearly all fields
187  * and methods are also declared as protected, so it is possible,
188  * with much care, to extend functionality in subclasses. (Normally
189  * you would also need to subclass FJTaskRunnerGroup.)
190  * <p>
191  * None of the normal java.lang.Thread class methods should ever be called
192  * on FJTaskRunners. For this reason, it might have been nicer to
193  * declare FJTaskRunner as a Runnable to run within a Thread. However,
194  * this would have complicated many minor logistics. And since
195  * no FJTaskRunner methods should normally be called from outside the
196  * FJTask and FJTaskRunnerGroup classes either, this decision doesn't impact
197  * usage.
198  * <p>
199  * You might think that layering this kind of framework on top of
200  * Java threads, which are already several levels removed from raw CPU
201  * scheduling on most systems, would lead to very poor performance.
202  * But on the platforms
203  * tested, the performance is quite good.
204  * <p>[<a HREF="http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html"> Introduction to this package. </a>]
205  * @see FJTask
206  * @see FJTaskRunnerGroup
207  **/

208
209 public class FJTaskRunner extends Thread JavaDoc {
210   
211   /** The group of which this FJTaskRunner is a member **/
212   protected final FJTaskRunnerGroup group;
213
214   /**
215    * Constructor called only during FJTaskRunnerGroup initialization
216    **/

217
218   protected FJTaskRunner(FJTaskRunnerGroup g) {
219     group = g;
220     victimRNG = new Random JavaDoc(System.identityHashCode(this));
221     runPriority = getPriority();
222     setDaemon(true);
223   }
224
225   /**
226    * Return the FJTaskRunnerGroup of which this thread is a member
227    **/

228   
229   protected final FJTaskRunnerGroup getGroup() { return group; }
230
231
232   /* ------------ DEQ Representation ------------------- */
233
234
235   /**
236    * FJTasks are held in an array-based DEQ with INITIAL_CAPACITY
237    * elements. The DEQ is grown if necessary, but default value is
238    * normally much more than sufficient unless there are
239    * user programming errors or questionable operations generating
240    * large numbers of Tasks without running them.
241    * Capacities must be a power of two.
242    **/

243
244   protected static final int INITIAL_CAPACITY = 4096;
245
246   /**
247    * The maximum supported DEQ capacity.
248    * When exceeded, FJTaskRunner operations throw Errors
249    **/

250
251   protected static final int MAX_CAPACITY = 1 << 30;
252
253   /**
254    * An object holding a single volatile reference to a FJTask.
255    **/

256   
257   protected final static class VolatileTaskRef {
258     /** The reference **/
259     protected volatile FJTask ref;
260
261     /** Set the reference **/
262     protected final void put(FJTask r) { ref = r; }
263     /** Return the reference **/
264     protected final FJTask get() { return ref; }
265     /** Return the reference and clear it **/
266     protected final FJTask take() { FJTask r = ref; ref = null; return r; }
267
268     /**
269      * Initialization utility for constructing arrays.
270      * Make an array of given capacity and fill it with
271      * VolatileTaskRefs.
272      **/

273     protected static VolatileTaskRef[] newArray(int cap) {
274       VolatileTaskRef[] a = new VolatileTaskRef[cap];
275       for (int k = 0; k < cap; k++) a[k] = new VolatileTaskRef();
276       return a;
277     }
278
279   }
280
281   /**
282    * The DEQ array.
283    **/

284     
285   protected VolatileTaskRef[] deq = VolatileTaskRef.newArray(INITIAL_CAPACITY);
286
287   /** Current size of the task DEQ **/
288   protected int deqSize() { return deq.length; }
289
290   /**
291    * Current top of DEQ. Generally acts just like a stack pointer in an
292    * array-based stack, except that it circularly wraps around the
293    * array, as in an array-based queue. The value is NOT
294    * always kept within <code>0 ... deq.length</code> though.
295    * The current top element is always at <code>top & (deq.length-1)</code>.
296    * To avoid integer overflow, top is reset down
297    * within bounds whenever it is noticed to be out out bounds;
298    * at worst when it is at <code>2 * deq.length</code>.
299    **/

300   protected volatile int top = 0;
301
302
303   /**
304    * Current base of DEQ. Acts like a take-pointer in an
305    * array-based bounded queue. Same bounds and usage as top.
306    **/

307
308   protected volatile int base = 0;
309
310
311   /**
312    * An extra object to synchronize on in order to
313    * achieve a memory barrier.
314    **/

315
316   protected final Object JavaDoc barrier = new Object JavaDoc();
317
318   /* ------------ Other BookKeeping ------------------- */
319
320   /**
321    * Record whether current thread may be processing a task
322    * (i.e., has been started and is not in an idle wait).
323    * Accessed, under synch, ONLY by FJTaskRunnerGroup, but the field is
324    * stored here for simplicity.
325    **/

326
327   protected boolean active = false;
328
329   /** Random starting point generator for scan() **/
330   protected final Random JavaDoc victimRNG;
331
332
333   /** Priority to use while scanning for work **/
334   protected int scanPriority = FJTaskRunnerGroup.DEFAULT_SCAN_PRIORITY;
335
336   /** Priority to use while running tasks **/
337   protected int runPriority;
338
339   /**
340    * Set the priority to use while scanning.
341    * We do not bother synchronizing access, since
342    * by the time the value is needed, both this FJTaskRunner
343    * and its FJTaskRunnerGroup will
344    * necessarily have performed enough synchronization
345    * to avoid staleness problems of any consequence.
346    **/

347   protected void setScanPriority(int pri) { scanPriority = pri; }
348
349
350   /**
351    * Set the priority to use while running tasks.
352    * Same usage and rationale as setScanPriority.
353    **/

354   protected void setRunPriority(int pri) { runPriority = pri; }
355
356   /**
357    * Compile-time constant for statistics gathering.
358    * Even when set, reported values may not be accurate
359    * since all are read and written without synchronization.
360    **/

361
362
363
364   static final boolean COLLECT_STATS = true;
365   // static final boolean COLLECT_STATS = false;
366

367
368   // for stat collection
369

370   /** Total number of tasks run **/
371   protected int runs = 0;
372
373   /** Total number of queues scanned for work **/
374   protected int scans = 0;
375
376   /** Total number of tasks obtained via scan **/
377   protected int steals = 0;
378
379
380
381
382   /* ------------ DEQ operations ------------------- */
383
384
385   /**
386    * Push a task onto DEQ.
387    * Called ONLY by current thread.
388    **/

389
390   protected final void push(final FJTask r) {
391     int t = top;
392
393     /*
394       This test catches both overflows and index wraps. It doesn't
395       really matter if base value is in the midst of changing in take.
396       As long as deq length is < 2^30, we are guaranteed to catch wrap in
397       time since base can only be incremented at most length times
398       between pushes (or puts).
399     */

400
401     if (t < (base & (deq.length-1)) + deq.length) {
402
403       deq[t & (deq.length-1)].put(r);
404       top = t + 1;
405     }
406
407     else // isolate slow case to increase chances push is inlined
408
slowPush(r); // check overflow and retry
409
}
410
411
412   /**
413    * Handle slow case for push
414    **/

415
416   protected synchronized void slowPush(final FJTask r) {
417     checkOverflow();
418     push(r); // just recurse -- this one is sure to succeed.
419
}
420
421
422   /**
423    * Enqueue task at base of DEQ.
424    * Called ONLY by current thread.
425    * This method is currently not called from class FJTask. It could be used
426    * as a faster way to do FJTask.start, but most users would
427    * find the semantics too confusing and unpredictable.
428    **/

429
430   protected final synchronized void put(final FJTask r) {
431     for (;;) {
432       int b = base - 1;
433       if (top < b + deq.length) {
434         
435         int newBase = b & (deq.length-1);
436         deq[newBase].put(r);
437         base = newBase;
438         
439         if (b != newBase) { // Adjust for index underflow
440
int newTop = top & (deq.length-1);
441           if (newTop < newBase) newTop += deq.length;
442           top = newTop;
443         }
444         return;
445       }
446       else {
447         checkOverflow();
448         // ... and retry
449
}
450     }
451   }
452
453   /**
454    * Return a popped task, or null if DEQ is empty.
455    * Called ONLY by current thread.
456    * <p>
457    * This is not usually called directly but is
458    * instead inlined in callers. This version differs from the
459    * cilk algorithm in that pop does not fully back down and
460    * retry in the case of potential conflict with take. It simply
461    * rechecks under synch lock. This gives a preference
462    * for threads to run their own tasks, which seems to
463    * reduce flailing a bit when there are few tasks to run.
464    **/

465
466   protected final FJTask pop() {
467     /*
468        Decrement top, to force a contending take to back down.
469     */

470
471     int t = --top;
472
473     /*
474       To avoid problems with JVMs that do not properly implement
475       read-after-write of a pair of volatiles, we conservatively
476       grab without lock only if the DEQ appears to have at least two
477       elements, thus guaranteeing that both a pop and take will succeed,
478       even if the pre-increment in take is not seen by current thread.
479       Otherwise we recheck under synch.
480     */

481
482     if (base + 1 < t)
483       return deq[t & (deq.length-1)].take();
484     else
485       return confirmPop(t);
486
487   }
488
489
490   /**
491    * Check under synch lock if DEQ is really empty when doing pop.
492    * Return task if not empty, else null.
493    **/

494
495   protected final synchronized FJTask confirmPop(int provisionalTop) {
496     if (base <= provisionalTop)
497       return deq[provisionalTop & (deq.length-1)].take();
498     else { // was empty
499
/*
500         Reset DEQ indices to zero whenever it is empty.
501         This both avoids unnecessary calls to checkOverflow
502         in push, and helps keep the DEQ from accumulating garbage
503       */

504
505       top = base = 0;
506       return null;
507     }
508   }
509
510
511   /**
512    * Take a task from the base of the DEQ.
513    * Always called by other threads via scan()
514    **/

515
516   
517   protected final synchronized FJTask take() {
518
519     /*
520       Increment base in order to suppress a contending pop
521     */

522     
523     int b = base++;
524     
525     if (b < top)
526       return confirmTake(b);
527     else {
528       // back out
529
base = b;
530       return null;
531     }
532   }
533
534
535   /**
536    * double-check a potential take
537    **/

538   
539   protected FJTask confirmTake(int oldBase) {
540
541     /*
542       Use a second (guaranteed uncontended) synch
543       to serve as a barrier in case JVM does not
544       properly process read-after-write of 2 volatiles
545     */

546
547     synchronized(barrier) {
548       if (oldBase < top) {
549         /*
550           We cannot call deq[oldBase].take here because of possible races when
551           nulling out versus concurrent push operations. Resulting
552           accumulated garbage is swept out periodically in
553           checkOverflow, or more typically, just by keeping indices
554           zero-based when found to be empty in pop, which keeps active
555           region small and constantly overwritten.
556         */

557         
558         return deq[oldBase & (deq.length-1)].get();
559       }
560       else {
561         base = oldBase;
562         return null;
563       }
564     }
565   }
566
567
568   /**
569    * Adjust top and base, and grow DEQ if necessary.
570    * Called only while DEQ synch lock being held.
571    * We don't expect this to be called very often. In most
572    * programs using FJTasks, it is never called.
573    **/

574
575   protected void checkOverflow() {
576     int t = top;
577     int b = base;
578     
579     if (t - b < deq.length-1) { // check if just need an index reset
580

581       int newBase = b & (deq.length-1);
582       int newTop = top & (deq.length-1);
583       if (newTop < newBase) newTop += deq.length;
584       top = newTop;
585       base = newBase;
586       
587       /*
588          Null out refs to stolen tasks.
589          This is the only time we can safely do it.
590       */

591       
592       int i = newBase;
593       while (i != newTop && deq[i].ref != null) {
594         deq[i].ref = null;
595         i = (i - 1) & (deq.length-1);
596       }
597       
598     }
599     else { // grow by doubling array
600

601       int newTop = t - b;
602       int oldcap = deq.length;
603       int newcap = oldcap * 2;
604       
605       if (newcap >= MAX_CAPACITY)
606         throw new Error JavaDoc("FJTask queue maximum capacity exceeded");
607       
608       VolatileTaskRef[] newdeq = new VolatileTaskRef[newcap];
609       
610       // copy in bottom half of new deq with refs from old deq
611
for (int j = 0; j < oldcap; ++j) newdeq[j] = deq[b++ & (oldcap-1)];
612       
613       // fill top half of new deq with new refs
614
for (int j = oldcap; j < newcap; ++j) newdeq[j] = new VolatileTaskRef();
615       
616       deq = newdeq;
617       base = 0;
618       top = newTop;
619     }
620   }
621
622
623   /* ------------ Scheduling ------------------- */
624
625
626   /**
627    * Do all but the pop() part of yield or join, by
628    * traversing all DEQs in our group looking for a task to
629    * steal. If none, it checks the entry queue.
630    * <p>
631    * Since there are no good, portable alternatives,
632    * we rely here on a mixture of Thread.yield and priorities
633    * to reduce wasted spinning, even though these are
634    * not well defined. We are hoping here that the JVM
635    * does something sensible.
636    * @param waitingFor if non-null, the current task being joined
637    **/

638
639   protected void scan(final FJTask waitingFor) {
640
641     FJTask task = null;
642
643     // to delay lowering priority until first failure to steal
644
boolean lowered = false;
645     
646     /*
647       Circularly traverse from a random start index.
648       
649       This differs slightly from cilk version that uses a random index
650       for each attempted steal.
651       Exhaustive scanning might impede analytic tractablity of
652       the scheduling policy, but makes it much easier to deal with
653       startup and shutdown.
654     */

655     
656     FJTaskRunner[] ts = group.getArray();
657     int idx = victimRNG.nextInt(ts.length);
658     
659     for (int i = 0; i < ts.length; ++i) {
660       
661       FJTaskRunner t = ts[idx];
662       if (++idx >= ts.length) idx = 0; // circularly traverse
663

664       if (t != null && t != this) {
665         
666         if (waitingFor != null && waitingFor.isDone()) {
667           break;
668         }
669         else {
670           if (COLLECT_STATS) ++scans;
671           task = t.take();
672           if (task != null) {
673             if (COLLECT_STATS) ++steals;
674             break;
675           }
676           else if (isInterrupted()) {
677             break;
678           }
679           else if (!lowered) { // if this is first fail, lower priority
680
lowered = true;
681             setPriority(scanPriority);
682           }
683           else { // otherwise we are at low priority; just yield
684
yield();
685           }
686         }
687       }
688       
689     }
690
691     if (task == null) {
692       if (COLLECT_STATS) ++scans;
693       task = group.pollEntryQueue();
694       if (COLLECT_STATS) if (task != null) ++steals;
695     }
696     
697     if (lowered) setPriority(runPriority);
698     
699     if (task != null && !task.isDone()) {
700       if (COLLECT_STATS) ++runs;
701       task.run();
702       task.setDone();
703     }
704
705   }
706
707   /**
708    * Same as scan, but called when current thread is idling.
709    * It repeatedly scans other threads for tasks,
710    * sleeping while none are available.
711    * <p>
712    * This differs from scan mainly in that
713    * since there is no reason to return to recheck any
714    * condition, we iterate until a task is found, backing
715    * off via sleeps if necessary.
716    **/

717
718   protected void scanWhileIdling() {
719     FJTask task = null;
720     
721     boolean lowered = false;
722     long iters = 0;
723     
724     FJTaskRunner[] ts = group.getArray();
725     int idx = victimRNG.nextInt(ts.length);
726     
727     do {
728       for (int i = 0; i < ts.length; ++i) {
729         
730         FJTaskRunner t = ts[idx];
731         if (++idx >= ts.length) idx = 0; // circularly traverse
732

733         if (t != null && t != this) {
734           if (COLLECT_STATS) ++scans;
735           
736           task = t.take();
737           if (task != null) {
738             if (COLLECT_STATS) ++steals;
739             if (lowered) setPriority(runPriority);
740             group.setActive(this);
741             break;
742           }
743         }
744       }
745       
746       if (task == null) {
747         if (isInterrupted())
748           return;
749         
750         if (COLLECT_STATS) ++scans;
751         task = group.pollEntryQueue();
752         
753         if (task != null) {
754           if (COLLECT_STATS) ++steals;
755           if (lowered) setPriority(runPriority);
756           group.setActive(this);
757         }
758         else {
759           ++iters;
760           // Check here for yield vs sleep to avoid entering group synch lock
761
if (iters >= group.SCANS_PER_SLEEP) {
762             group.checkActive(this, iters);
763             if (isInterrupted())
764               return;
765           }
766           else if (!lowered) {
767             lowered = true;
768             setPriority(scanPriority);
769           }
770           else {
771             yield();
772           }
773         }
774       }
775     } while (task == null);
776
777
778     if (!task.isDone()) {
779       if (COLLECT_STATS) ++runs;
780       task.run();
781       task.setDone();
782     }
783     
784   }
785
786   /* ------------ composite operations ------------------- */
787
788     
789   /**
790    * Main runloop
791    **/

792
793   public void run() {
794     try{
795       while (!interrupted()) {
796         
797         FJTask task = pop();
798         if (task != null) {
799           if (!task.isDone()) {
800             // inline FJTask.invoke
801
if (COLLECT_STATS) ++runs;
802             task.run();
803             task.setDone();
804           }
805         }
806         else
807           scanWhileIdling();
808       }
809     }
810     finally {
811       group.setInactive(this);
812     }
813   }
814
815   /**
816    * Execute a task in this thread. Generally called when current task
817    * cannot otherwise continue.
818    **/

819
820     
821   protected final void taskYield() {
822     FJTask task = pop();
823     if (task != null) {
824       if (!task.isDone()) {
825         if (COLLECT_STATS) ++runs;
826         task.run();
827         task.setDone();
828       }
829     }
830     else
831       scan(null);
832   }
833
834
835   /**
836    * Process tasks until w is done.
837    * Equivalent to <code>while(!w.isDone()) taskYield(); </code>
838    **/

839
840   protected final void taskJoin(final FJTask w) {
841
842     while (!w.isDone()) {
843
844       FJTask task = pop();
845       if (task != null) {
846         if (!task.isDone()) {
847           if (COLLECT_STATS) ++runs;
848           task.run();
849           task.setDone();
850           if (task == w) return; // fast exit if we just ran w
851
}
852       }
853       else
854         scan(w);
855     }
856   }
857
858   /**
859    * A specialized expansion of
860    * <code> w.fork(); invoke(v); w.join(); </code>
861    **/

862
863
864   protected final void coInvoke(final FJTask w, final FJTask v) {
865
866     // inline push
867

868     int t = top;
869     if (t < (base & (deq.length-1)) + deq.length) {
870
871       deq[t & (deq.length-1)].put(w);
872       top = t + 1;
873
874       // inline invoke
875

876       if (!v.isDone()) {
877         if (COLLECT_STATS) ++runs;
878         v.run();
879         v.setDone();
880       }
881       
882       // inline taskJoin
883

884       while (!w.isDone()) {
885         FJTask task = pop();
886         if (task != null) {
887           if (!task.isDone()) {
888             if (COLLECT_STATS) ++runs;
889             task.run();
890             task.setDone();
891             if (task == w) return; // fast exit if we just ran w
892
}
893         }
894         else
895           scan(w);
896       }
897     }
898
899     else // handle non-inlinable cases
900
slowCoInvoke(w, v);
901   }
902
903
904   /**
905    * Backup to handle noninlinable cases of coInvoke
906    **/

907
908   protected void slowCoInvoke(final FJTask w, final FJTask v) {
909     push(w); // let push deal with overflow
910
FJTask.invoke(v);
911     taskJoin(w);
912   }
913
914
915   /**
916    * Array-based version of coInvoke
917    **/

918
919   protected final void coInvoke(FJTask[] tasks) {
920     int nforks = tasks.length - 1;
921
922     // inline bulk push of all but one task
923

924     int t = top;
925
926     if (nforks >= 0 && t + nforks < (base & (deq.length-1)) + deq.length) {
927       for (int i = 0; i < nforks; ++i) {
928         deq[t++ & (deq.length-1)].put(tasks[i]);
929         top = t;
930       }
931
932       // inline invoke of one task
933
FJTask v = tasks[nforks];
934       if (!v.isDone()) {
935         if (COLLECT_STATS) ++runs;
936         v.run();
937         v.setDone();
938       }
939       
940       // inline taskJoins
941

942       for (int i = 0; i < nforks; ++i) {
943         FJTask w = tasks[i];
944         while (!w.isDone()) {
945
946           FJTask task = pop();
947           if (task != null) {
948             if (!task.isDone()) {
949               if (COLLECT_STATS) ++runs;
950               task.run();
951               task.setDone();
952             }
953           }
954           else
955             scan(w);
956         }
957       }
958     }
959
960     else // handle non-inlinable cases
961
slowCoInvoke(tasks);
962   }
963
964   /**
965    * Backup to handle atypical or noninlinable cases of coInvoke
966    **/

967
968   protected void slowCoInvoke(FJTask[] tasks) {
969     for (int i = 0; i < tasks.length; ++i) push(tasks[i]);
970     for (int i = 0; i < tasks.length; ++i) taskJoin(tasks[i]);
971   }
972
973 }
974
975
Popular Tags